Updated on 2025/12/26

写真a

 
SAKAMAKI Yoshikazu
 
Organization
School of Data Science and Management Department of Data Science and Management Associate Professor
Title
Associate Professor

Degree

  • 博士(工学) ( 2005.3   東京工業大学 )

Research Interests

  • マーケティングサイエンス

  • 統計学

  • Analysis for business management

  • Data Mining

  • Marketing Science

  • Statistics

  • 企業経営分析

  • データマイニング

Research Areas

  • Humanities & Social Sciences / Economic statistics

 

Papers

  • Proposal for an Improvement of the Parameter Estimation Method in Multinomial Logit Model Using Weight of Evidence Reviewed

    Yoshikazu Sakamaki

    Journal of Information Processing   33   776 - 789   2025.10

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  • Parameter Estimation for Support Vector Machines using Markov Chain Monte Carlo Simulation Reviewed

    Yoshikazu Sakamaki

    Journal of Information Processing   33   377 - 386   2025.4

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:情報処理学会  

    One of the widely used methods in machine learning is the support vector machine (SVM). The SVM is a data classification algorithm based on labeled training data; it is widely used in fields, such as image classification and machine learning. In the SVM, parameter estimation is frequently performed based on mathematical programming methods, such as Sequential Minimal Optimization (SMO), Studies have proposed various algorithms, including interior-point methods. However, although the variables used in an SVM model are generally interrelated, traditional SVMs based on optimization problems cannot consider the relationships between variables in the model, such as the variance-covariance relationship observed in regression analysis. To address this, we attempted to estimate the parameters of an SVM by considering the relationships between the variables through Markov Chain Monte Carlo (MCMC) simulations. Furthermore, through verification experiments using real data, we demonstrated the possibility of estimating the variance and covariance of parameters from sampled data and improving the estimation accuracy through data over-sampling.

  • CNNを用いた1変量からなる時系列データの分類方法 に関する一考察 Reviewed

    坂巻英一

    日本情報経営学会誌   44 ( 4 )   73 - 83   2025

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • デジタル媒体を用いたダイレクトメール配信が顧客エンゲージメントに与える影響に関する研究 Reviewed

    坂巻英一

    Direct Marketing Review   23   2025.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • A Consideration of Credit Ratings Prediction Model Using Support Vector Machine Reviewed

    Yoshikazu Sakamaki

    66 ( 2 )   447 - 454   2025.2

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

    In stock investment, the financial condition of a company is one of the critical pieces of information for investors. One practical indicator used to understand a company's financial status is credit ratings, which have been utilized for a long time. This research first describes a method for estimating corporate credit ratings from financial indicators using Support Vector Machines (SVM), a widely used classification technique in the field of machine learning. Next, we discuss some issues associated with existing models and propose improvements to the credit rating estimation model using SVM. Furthermore, we aim to demonstrate the superiority of the proposed model through empirical experiments by applying the method to real data.

  • 新型コロナウィルスによる巣ごもり需要がもたらした 消費行動の変化に対する一考察 Reviewed

    坂巻英一

    Direct Marketing Review vol.34   23   18 - 41   2024.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 疑似乱数を用いた集団AHPにおける一対比較行列の推定に関する一考察 Reviewed

    坂巻英一, 菊池貞孝

    経営情報学会誌   23 ( 1 )   1 - 16   2014.6

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 地理情報データを用いた光ファイバー網の利用契約促進に関する一考察 Reviewed

    坂巻英一,鈴木邦成,若林敬造 

    日本情報ディレクトリ学会誌   12   44 - 53   2014.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 集団AHPにおける一対比較行列推定法の提案 Reviewed

    坂巻英一

    情報処理学会論文誌   55 ( 3 )   1160 - 1166   2014.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • Twitter上のつぶやきに関するテキストマイニングの事例研究―大規模災害発生時の被災地における現状把握への応用― Reviewed

    坂巻英一, 亀井悦子

    日本経営工学会論文誌   65 ( 1 )   40 - 50   2014.1

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 検索語句を利用した携帯電話の解約予測モデル構築法 Reviewed

    坂巻英一

    経営情報学会誌   22 ( 2 )   177 - 186   2013.9

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 環境品質マネジメントにもたらす課題に対するAHP階層モデルを用いた貨物輸送についての政策提言に関する一考察 Reviewed

    坂巻英一,鈴木邦成,若林敬造,渡邊昭廣,河合信明,唐澤豊

    一般社団法人日本ロジスティクスシステム学会誌   13 ( 1 )   129 - 136   2013.9

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 基地局へのアクセス履歴データを活用したデジタルコンテンツの拡販戦略に関する提案 Reviewed

    坂巻英一

    Direct Marketing Review   12   34 - 48   2013.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • ケイタイショップのマーケティング戦略~地理情報データの活用法に関する提案~ Reviewed

    坂巻英一

    Direct Marketing Review   11   63 - 77   2012.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 多項ロジットモデルを用いた消費者のブランドスイッチ行動予測モデル構築法の提案 Reviewed

    坂巻英一, 齊藤俊則

    経営情報学会誌   15 ( 2 )   23 - 38   2006.9

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 地理情報システムを活用したエリアクラスタリング構築法の提案 Reviewed

    坂巻英一

    Direct Marketing Review   5   41 - 57   2006.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 多段階多項企業格付予測のためのロジット・モデルに関する研究 Reviewed

    坂巻英一

    行動計量学   33 ( 1 )   69 - 85   2006.1

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • バラエティシーキングを考慮した選択集合概念を用いたインターネットユーザのWEBサイト選択モデル Reviewed

    坂巻英一

    マーケティング・サイエンス   14 ( 1 )   36 - 60   2005.12

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • Improvement proposal of consumer's choice behavior model with consideration set Reviewed

    坂巻英一

    Behaviormetrika   32 ( 1 )   29 - 54   2005.1

     More details

    Authorship:Lead author   Language:English   Publishing type:Research paper (scientific journal)  

  • ブランドのカテゴリー化による選択集合を考慮した階層型消費者行動予測モデル構築法の改善提案 Reviewed

    坂巻英一

    マーケティング・サイエンス   11 ( 1(2) )   22 - 42   2003.9

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 個人差を考慮したジョイントセグメンテーションモデルによる消費者セグメント構築法の提案 Reviewed

    坂巻英一

    経営情報学会誌   11 ( 4 )   1 - 15   2003.3

     More details

    Authorship:Lead author   Language:Japanese   Publishing type:Research paper (scientific journal)  

  • 選択集合を考慮したバラエティ・シーキング行動モデル Reviewed

    守口剛,坂巻英一

    行動計量学   26 ( 2 )   107 - 113   1999.1

     More details

    Authorship:Last author   Language:Japanese   Publishing type:Research paper (scientific journal)  

▼display all

Presentations

▼display all

Research Projects

  • 数理モデルを用いた消費者行動分析、企業における経営分析手法に関する研究

    2005 - 2007

    Competitive external funding 

      More details

    Grant type:Competitive

  • Analysis for consumers' choice behavior and business management with mathematical model

    2005 - 2007

    Competitive external funding 

      More details

    Grant type:Competitive